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Exchange interactions among defects in semiconductors are commonly treated within effective-mass theory
using a scaled hydrogenic wave function. However, such a wave function is only applicable to shallow
impurities; here, we present a simple but robust generalization to treat deep donors, in which we treat the
long-range part of the wave function using the well-established quantum defect theory, and include a model
central-cell correction to fix the bound-state eigenvalue at the experimentally observed value. This allows us to
compute the effect of binding energy on exchange interactions as a function of donor distance; this is a
significant quantity given recent proposals to carry out quantum information processing using deep donors. As
expected, exchange interactions are suppressed �or increased�, compared to the hydrogenic case, by the greater
localization �or delocalization� of the wave functions of deep donors �or “supershallow” donors with binding
energy less than the hydrogenic value�. The calculated results are compared with a simple scaling of the
Heitler-London hydrogenic exchange; the scaled hydrogenic results give the correct order of magnitude but fail
to reproduce quantitatively our calculations. We calculate the donor exchange in silicon including intervalley
interference terms for donor pairs along the �100� direction, and also show the influence of the donor type on
the distribution of nearest-neighbor exchange constants at different concentrations. Our methods can be used to
compute the exchange interactions between two donor electrons with arbitrary binding energy.
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I. INTRODUCTION

Accurate estimations of exchange interactions among
semiconductor defects are crucial in determining the mag-
netic properties of doped semiconductors near to a metal-
insulator transition1 and in assessing the potential of such
defects for potential applications in quantum information
processing.2,3 However, the long-range tails of defect wave
functions make it difficult or impossible to treat these sys-
tems using fully ab initio techniques, so such calculations are
generally performed within empirical models such as the
well-established effective mass approximation.4–6 The
quantum-mechanical problem for a single defect is thereby
reduced to that of a single electron moving in an effective
medium determined by the effective mass and static permit-
tivity of the host crystal; in the simplest form of the theory,
the solution becomes that of a scaled hydrogen atom. The
exchange between two such defects can then be obtained
from well-established treatments of exchange in the hydro-
gen molecule, ranging from the simple Heitler-London
model7 to the more sophisticated approach of Herring8 and
Herring and Flicker,9 which exactly accounts for the two-
electron correlations in the limit of large separations.

However, a number of complications arise when consid-
ering real defect systems. First, the minima of the conduction
band may not be isotropic; this is so in the important case of
silicon, where there are six degenerate minima lying along
the �100� directions in the Brillouin zone and each having a
significant anisotropy �m�=0.98me and m� =0.19me�, where
me is the electron mass. This is commonly dealt with either
by simply adopting an effective isotropic dispersion with
an appropriate average effective mass �for example, m*

= �m�m�
2 �1/3� or by making a variational ansatz for the wave

function of the anisotropic system, such as that of Luttinger
and Kohn,4,6 and Kittel and Mitchell.5

Second, the existence of more than one minimum needs to
be accounted for; this results in an effective-mass wave func-
tion of the form

��r�� = �
n

�nFn�r���nk�0
�r�� , �1�

where the sum runs over the different minima, Fn is a slowly
varying envelope function, and �nk�0

�r��=exp�ik�0 ·r��unk�0
�r�� is

the Bloch function for the nth minimum. The coefficients �n
arise from the coupling of the different band minima by
short-range �large wave vector� components of the potential;
for an isolated substitutional donor in a perfect crystal, they
correspond to an irreducible representation of the Td point
group. In this paper, we concentrate on the ground state of
defects in silicon, for which the terms in Eq. �1� correspond
to the six �100� directions and the appropriate representation
is the identity representation,

��0� =
1
	6

�1,1,1,1,1,1� . �2�

The existence of these distinct parts to the wave function
gives rise to interference terms in properties of defect pairs
as a function of their separation. Such terms were originally
considered in electron hopping and recombination rates10,11

and later included in exchange interactions.1,12 Other more
recent calculations are discussed below. Note, however, that
the expressions used in Ref. 1 to average the exchange over
the different minima assume a particular physical origin for
the exchange �namely, the direct electron-electron Coulomb
interaction term� which does not, in fact, dominate the prob-
lem. Although its magnitude has approximately the same
asymptotic scaling as the full exchange, by itself the direct
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term would lead to a ferromagnetic spin-spin interaction. The
observed interaction is always antiferromagnetic, as it must
be for a two-electron system.13

Both the anisotropy and multiple-minima problems can be
largely solved for shallow donors while remaining largely or
entirely within the framework of effective-mass theory, and a
number of recent papers have addressed the exchange be-
tween hydrogenic donors by this method. Much of the inspi-
ration for this work came from the proposal2 to use such
exchange in shallow donors as a qubit-qubit coupling mecha-
nism to drive entangling gates in quantum information pro-
cessing. This proposal has led to a major experimental
program14,15 and to significant achievements in the precise
positioning of P atoms at the Si�001� surface.16 The original
Kane proposal also inspired related ideas for manipulating
donor spins in specially engineered Si-Ge heterostructures,17

for exploiting dipolar couplings in place of exchange
interactions,18 using electron spins with global �rather than
local� control techniques19 or using defects localized at the
Si-SiO2 interface.20

The importance of precise donor positioning in determin-
ing the value of the exchange was emphasized in Ref. 21, but
this paper follows1 in using only the �ferromagnetic� direct
exchange interaction for the calculations. The full Heitler-
London formula for the exchange was used in a following
paper,22 where the contribution of strain to modifying the
interaction was also discussed. These calculations were per-
formed by neglecting the spatial variation of the periodic part
of the Bloch functions un,k�0

appearing in Eq. �1�; this ap-
proximation was carefully examined in Ref. 23 and found to
be very accurate, and this finding was confirmed by a subse-
quent calculation of the electronic structure of defect pairs in
which the Bloch functions from an ab initio treatment of the
host crystal were used.24 The same paper also found that
allowing the phases of the different Bloch function contribu-
tions to “float” relative to one another in the case of the
defect pair made small difference to the results. A calculation
of the single-center functions in both strained and unstrained
silicon was subsequently reported25 which performed a full
diagonalization of a model potential in reciprocal space in
order to account for central-cell corrections, and the resulting
wave functions were used to compute the exchange between
P:Si pairs using the Heitler-London approach. A significant
reduction in exchange, even for these shallow donors, was
predicted relative to the results of simple effective-mass
theory. A “molecular-orbital” approach to the electronic
structure of an isolated pair of P:Si impurities has also been
reported,26 which explicitly included the six valley-orbit
states in the 1s manifold for each defect as a basis for a
configuration interaction calculation, while possible failures
of the Heitler-London approach were also explored �both for
models of defect systems and of quantum dots� in Ref. 27

Similar approaches have also been used to treat impurities
in more realistic device geometries. The response of the
wave functions of a shallow-donor pair to an applied field
�and hence to the operation of a controlling electrode in the
Kane scheme� was computed in Refs. 28 and 29 and this
approach was subsequently generalized to describe all the
aspects of gate operation using a donor pair in a strained
silicon quantum well,30 with model central-cell effects in-

cluded via a range-dependent dielectric function adjusted to
give the correct intervalley splitting for P:Si.

The third difficulty is in many ways most serious:
effective-mass theory predicts that all single-electron donors
in a given host should have the same binding energy, inde-
pendent of their chemical nature. This is far from the case: in
silicon, for example, the observed binding energies range
from 31.2 meV for Li and 45.6 meV for P through to
71.0 meV for Bi,31 whereas the calculated value using the
Luttinger-Kohn variant of effective-mass theory is
31.3 meV.31 It is very desirable to predict exchange in
deeper donors by similarly simple methods: they are advan-
tageous for quantum information processing3 because they
are less prone to ionization, and have much longer spin-
lattice relaxation lifetimes32—indeed, resonant Raman routes
for spin relaxation are completely absent if the level spacing
exceeds the maximum phonon energy of the host material
�64.5 meV for Si�. Both these factors contribute to increase
the maximum temperature at which quantum information
processing might be attainable relative to shallow donors.

Specifically, the motivation for the present study is the
scheme presented in Ref. 3, where deep donors are coupled
by exchange interactions that may be enhanced by electronic
excitation of a companion �“control”� species. We shall have
in mind the particular case of Bi:Si, as the deepest single
donor in silicon.31 Its naturally occurring isotope 209Bi has
nuclear spin I=9 /2, but the advantages of deep donors are
most evident for schemes in which the quantum information
is represented by the electronic �rather than nuclear� spins.

However, treating deep donors requires some significant
corrections to effective-mass theory. Two common ap-
proaches involve making an explicit short-range correction
to the Coulomb field of the impurity �the so-called “central-
cell correction”�, or altering the long-range solution in the
Coulomb field so that it corresponds to the observed binding
energy �the “quantum defect” approach, which has its origins
in atomic physics�.33,34 However, the effect of these modifi-
cations on the exchange interactions of the defects has re-
mained largely unknown.

In this paper, we show how the exchange in the most
physically relevant range of separations can be computed
between donors with arbitrary binding energies �including
the important case of deep donors�. We use a quantum defect
description, with a simple model potential to represent the
central-cell correction; for reasons that are explained below,
it is important to compute the exchange using a potential for
which the wave function concerned is an eigenfunction. We
first introduce the techniques that we use: the effective-mass
model, quantum defect corrections to it, and the simple
central-cell corrections, followed by the methods we use to
calculate exchange. Then we present our results for defects
of different binding energies.

II. METHOD OF CALCULATION

A. Effective-mass theory

The effective-mass equation4–6 reads
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�n�k�0 +
1

i
� � + U
Fn = �Fn, �3�

where it is intended that the band energy �n be expanded
around the band extremum k�0 to second order terms in
�1 / i��. Fn is the envelope function, in terms of which the
true wave function is expanded using

� = �
n

�nFn�r���nk�0
�r�� , �4�

where Fn is a solution of the effective-mass equation.
In the simplest theory, the effective-mass tensor is re-

placed by a single averaged effective mass m*, resulting in
an effective isotropic equation for the envelope function,
which is then independent of the index n,


−
�2

2m*�2 −
e2

�rr
− �
F�r�� = 0, �5�

where �r is the relative permittivity of the host. In this paper,
we will follow other recent treatments �for example, Refs. 21
and 22� and work with this isotropic equation as our starting
point. For silicon, m*=0.33me and �r=11.7; this leads to a
set of scaled atomic units for the hydrogenic impurity prob-
lem �length a0

*=1.94 nm and energy Ha*=0.062 eV�.

B. Quantum defect method

The first component of our correction to effective-mass
theory involves treating the wave function far from the im-
purity by the quantum defect method.34 Even in the simplest
isotropic approximation, the method was found to provide
quantitative results giving good approximations to both the
observed spectral dependence and magnitude of the photo-
ionization cross section.33 An essential feature of the quan-
tum defect method is that good approximate wave functions
valid in the region outside the impurity ion core can be de-
termined using only a knowledge of the energy eigenvalues.
Rather than attempting to solve it as an eigenvalue equation
to determine the allowed spectrum of �, Eq. �5� is considered
valid for large r only and solved for the asymptotic form of
the envelope functions F�r�� corresponding to the empirical
value of �. Therefore, the method can deduce the long-range
part of the donor wave functions associated with the ob-
served energy levels, whether deep or shallow, provided that
the dominant corrections to effective-mass theory are short
range �operate only near the defect�. Of the several different
terms believed to contribute to the shift in binding energy for
deep donors �see, for example, Ref. 35�, only the electron-
phonon interaction operates far from the defect and its con-
tribution is believed to be small.

The most useful form of the far-field solution is a multiple
of the well-known Whittaker function which is just a particu-
lar linear combination of two standard linearly independent
confluent hypergeometric functions, the combination being
determined by the boundary conditions at infinity. We con-
sider the auxiliary radial function defined by P�r��rR�r�,
and write

P�,l�r� = N�,lW�,l+1/2�2r/�� , �6�

where W is a Whittaker function,36 N is a normalization con-
stant, and � is the quantum defect parameter defined by

� =
− 1

2�2 . �7�

If and only if the donor is hydrogenic �i.e., shallow�, � is an
integer.

C. Model central-cell corrections

For noninteger values of �, the radial function associated
with solution �6� diverges like R�r�= P�r� /r� 1

r as r→0.
�Nevertheless, this divergence is integrable, so the functions
have a well-defined normalization for all �.34� In order to
find a solution to Eq. �5� that remains finite at the origin for
a general given energy �, we have to correct the potential at
short distances. One way to do this is to look for corrections
based on the local physics of the impurity �for example, in-
corporating correctly the transition from a screened to an
unscreened nuclear potential37–39 or including self-
consistently the scattering effects of the impurity by means
of a pseudopotential based on the microscopic physics40�;
another way is to correct the potential at small r empirically
solely in order to make the solution regular there at the ex-
perimentally observed energy eigenvalue. In this second
case, the potential will not correspond to the physics operat-
ing in the core region of the real defect, but it will produce
the correct shift in binding energy. We adopt the second ap-
proach in this paper and refer to the empirical correction as a
model central-cell correction. We should expect that the two
approaches would give similar results for the calculation of
exchange interactions since they are determined predomi-
nantly by the long-range behavior of the wave function.

We can then write the Hamiltonian of a single defect cen-
ter A as

ĤA = −
1

2
�2 −

1

�r� − R� A�
+ �V�r� − R� A� , �8�

where the third term on the right hand side is the model
central-cell correction, which is not unique. In this work, we
used two forms for �V: a �-function shell or a square-well
potential.

1. �-potential correction

Let us choose �V to be a potential “shell” at radius r=a,
where a is very small �a�1 in scaled atomic units�,

V�r� = −
1

r
+ 	��r − a� . �9�

In the following discussion, we will only consider
s-symmetry wave functions because they are the donor
ground states. After matching the large-r solution to a solu-
tion valid for small r that is regular at the origin and obeys
the cusp condition for a nucleus of charge Z=1 �R��0�=
−R�0��, we find the solution
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R�r� = �R�a�
1 − r

1 − a
, r 
 a

P�,0�r�/r , r � a ,
� �10�

where P�,0�r� is the long-range solution for s states defined
by Eq. �6�. Figure 1 shows the wave function for deep and
shallow donors, both with the central-cell correction and
without it. Note how the diverging tails of the Whittaker
function are cut off for r�a.

2. Square-well potential correction

An alternative matching is to replace the Coulomb poten-
tial by a square well, of depth V0, for r�a,

V�r�� = � V0, r 
 a

−
1

r
, r � a . � �11�

This model correction gives us the following.

�a� E�V0:

P�r� = �P�,0�a�
sin kr

sin ka
, r 
 a

P�,0�r� , r � a .
� �12�

�b� E�V0:

P�r� = �P��a�
sinh kr

sinh ka
, r 
 a

P��r� , r � a .
� �13�

In Fig. 1, we compare the wave functions for both deep
and shallow donors, with both �-function square-well poten-
tial central-cell corrections, and without any central-cell cor-
rection. Note that in both cases the diverging tails of the
wave function are cut off for r�a.

D. Exchange calculations

Within effective-mass theory, the exchange between two
hydrogenic donors as a function of distance maps to the ex-
change between two hydrogen atoms as a function of bond
length. This problem has been treated using different meth-
ods since the 1920s.

1. Heitler-London model

The Heitler-London model7 simply evaluated the differ-
ence between the expectation values of the Hamiltonian in
two two-electron wave functions, one a singlet �1
g� and one
a triplet �3
u�, both constructed from the 1s ground states
�a�r�� and �b�r�� of the single atoms. This approach neglects
any contributions from other atomic states and hence also
contributions to the correlation arising from the polarization
of one atom in the field of the other. The energy difference
can be written as

J � Et − Es =
2

1 − s̃4 �2js̃2 + j�s̃2 − 2ks̃ − k�� , �14�

s̃ �� �a�1��b�1�d�1� , �15�

j =� �a�1�
−
1

r1b

�a�1�d�1� , �16�

k =� �a�1�
−
1

r1b

�b�1�d�1� , �17�

j� �� �a
2�1��b

2�2�
1

r12
d�1�d�2� , �18�

k� �� �a�1��b�1��a�2��b�2�
1

r12
d�1�d�2� . �19�

All these quantities are positive; the one-electron contribu-
tions involving j and k yield a net antiferromagnetic coupling
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FIG. 1. Comparison of the wave functions generated by the
�-potential and square-well potential central-cell corrections. �a�
Deep donor, �=0.7 and �b� supershallow donor, �=1.1. In each
case, the dotted curve shows P�,0

� �r� /r with a �-potential central-cell
correction applied at a=0.1, the dashed-dotted curve is P�,0

sw �r� /r
with a square-well potential central-cell correction applied with a
=0.1, dashed curve the uncorrected Whittaker function P�,0 /r plot-
ted for comparison, and solid curve the radial part of a true 1s
hydrogenic state ��=1�. Notice how the diverging tail of the Whit-
taker function is cut off for r�a by both central-cell corrections;
the form of the curves for r�a depends on the details of the po-
tential applied.
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�positive J in our sign convention�, while the two-electron
terms j� and k� are net ferromagnetic. However, the neglect
of correlation results in an unphysical logarithmic divergence
in k� at large internuclear separations R, causing the overall J
to become negative �ferromagnetic�, in violation of the theo-
rem proved by Heisenberg13 showing that the spatial ground
state of a two-electron system is always even under exchange
of the particle positions, and hence is a spin singlet.

We note that in order to write J in the form of Eq. �14�, it
is essential that �a and �b be exact eigenstates of the single-
atom problem with energy E0=−1 /2. This allows one to re-
place the off-diagonal matrix elements of the kinetic energy
operator by

� �a�1�
−
1

2
�1

2
�b�1�d�1� =� �a�1�
E0 +
1

r1b

�b�1�d�1� .

�20�

We refer to this as the “Koiller method,” since it is used in
Refs. 21 and 22.

If Eq. �20� is not obeyed �i.e., if �a and �b are not exact
eigenfunctions of the single-donor problem�, an alternative
expression must be used,

����Ĥ���� =
1

1 � S2�2��a�1���−
1

2
�2���a�1��

+ 2��a�1���−
1

r1A
���a�1��

+ 2��a�1���−
1

r1B
���a�1��

� 2S
��a�1���−
1

2
�2���b�1��

+ 2��a�1���−
1

r1A
���b�1��


+� d�1�d�2�
�a

2�1��b
2�2�

r12
�

� d�1�d�2�
�a�1��b�1��a�2��b�2�

r12
� +

1

R
,

�21�

J = ��−�Ĥ��−� − ��+�H��+� . �22�

We refer to this as the “exact Heitler-London” method below.
In either case, when using a central-cell correction of the

type discussed in Sec. II C, it is important to include the
central-cell terms in the appropriate matrix elements of the
single-particle potential, i.e., in the calculation of the quan-
tities j and k via Eqs. �16� and �17� and in the one-electron
terms in Eq. �21�.

2. Other trial wave functions

Other trial wave functions have been proposed for the
hydrogenic case in an attempt to give some account of
electron-electron correlation and remove the unphysical sign

change in the exchange. Kolos and Wolohectz42 used trial
wave functions in elliptic coordinates similar to those pro-
posed by Ref. 41 to perform a variational calculation of sin-
glet and triplet energies, obtaining the exchange splitting
from the energy difference. The numerical results are com-
pared with the Heitler-London values in Fig. 2.

3. Herring-Flicker asymptotic form

A different approach was pursued by Herring8 and by
Gor’kov and Pitaevskii,43 who pointed out that the exchange
could be written in terms of a hypersurface integral as

J =
1

2
�

S

dS��P�1� � �1 − �1 � �P�1�� + O�e−4R� ,

�23�

where
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FIG. 2. The single-envelope exchange splitting J for hydrogenic
donors calculated by three different methods as a function of inter-
nuclei distance R and shown on a logarithmic scale. �a� Heitler-
London exchange �solid curve�, Herring-Flicker asymptotic �dotted
curve�, and Kolos’ numerical calculation �dashed curve� for R

7a0 and �b� Heitler-London exchange �solid curve�, Herring-
Flicker asymptotic �dotted curve�, and magnitude of magnetic dipo-
lar interaction for R
20a0. Notice that the Heitler-London model
agrees closely with the Herring-Flicker asymptotic form, and that
from around R=12a0 the dipole-dipole interaction is larger than the
exchange interaction.
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�1 =
1
	2

��g + �u� �24�

is a spatial wave function that is not properly antisymme-
trized and has electron 1 localized on atom a and electron 2
on atom b, while �assuming the nuclear separation is in the z
direction� the hypersurface S is defined by the condition z1
=z2.

Herring and Flicker9 showed that this formula could be
evaluated exactly in the limit R→�, giving an asymptotic
form for the exchange of

JHF = Etriplet − Esinglet = 1.642R5/2e−2R + O�R2e−2R� . �25�

No unphysical sign change occurs in the Herring-Flicker
asymptotic form.

We compare the Heitler-London, Kolos, and Herring-
Flicker results for values of R up to 7a0 �using a logarithmic
scale� in Fig. 2�a�; we also give a comparison for larger
values of R �up to 20a0� in Fig. 2�b�. Note that all three
calculations agree quite well up to R=7a0 �the maximum
radius for which Kolos’ numerical results were calculated�,
and that the Heitler-London and Herring-Flicker forms are
also close for R
20a0. We therefore expect that the Heitler-
London approximation is a reasonable one in this distance
range �the unphysical sign change to a ferromagnetic inter-
action does not occur until R=49.5a0�. For comparison, Fig.
2�b� also shows the variation of the quantity �0g2�B

2 /4�r3,
which determines the magnitude of the magnetic dipolar in-
teraction; we see that the dipolar interaction starts to domi-
nate over exchange for hydrogenic defects when R�12a0

*.

4. Intervalley effects

The calculations presented so far give the exchange for
molecular hydrogen. When we consider impurity states in a
semiconductor, we must remember that the full wave func-
tion is of form �4�. Assuming that the intervalley couplings
are mainly determined by single-impurity physics �so Eq. �2�
still holds�, the Heitler-London exchange formula �Eq. �14��
should be replaced22 by

J�R� � = �
�,� 
 �

K� ,K� �

�c
K�
� �2�c

K� �

� �2ei�K� −K� ��·R�

�����2����2J���R� �cos�k�� − k��� · R� , �26�

where the pair of donors are at R� A=0, R� B=R� , and R�a0
*

�effective Bohr radius�. The second sum �in square brackets�
in Eq. �26� refers to the reciprocal-lattice expansion of the

periodic Bloch functions, u��r��=�K� c
K�
�
eiK� ·r�, and k�� and k�� are

band minima points. The full expression for J�� is given in
the Appendix of Ref. 22; in the isotropic effective-mass ap-
proximation where the envelope functions Fn�r�� are the same
for each minimum, and assuming that rapidly oscillating
terms in the integrals �proportional to ei�k��i�−k��j��·r�, where r is
one of the integrated variables� are negligible, J�� can be
replaced by the exchange Jw computed using the radial func-
tions derived from the Whittaker functions. The final expres-
sion for the exchange is then

J�R� = �
�,� 
 �

K� ,K� �

�c
K�
� �2�c

K� �

� �2ei�K� −K� ��·R�

�����2����2Jw�R�cos�k�� − k��� · R� . �27�

E. Fitting Whittaker function with 1s Gaussian

Once modified by our model central-cell correction, Whit-
taker functions are valid solutions for the single-impurity
problem for the whole range of r. To evaluate the integrals
appearing in Jw�R�, we expand these solutions as a sum of
Gaussians and use the analytical formulas in Ref. 44. We
write

P�,0�r�
r

� R�
G�r� = �

n

AnGn�r,Bn� ,

Gn�r,Bn� = e−Bnr2
. �28�

In all the calculations presented here, we use ten 1s
Gaussian-type orbitals to fit each Whittaker function.

In Fig. 3, we show comparisons of such fits with the origi-
nal wave functions. We see that we obtain a very good fit
over the physically interesting distance range R
12a0

*.
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FIG. 3. Gaussian fits of Whittaker functions for �a� typical deep
donor ��=0.7�, �b� typical hydrogenic shallow donor electron ��
=1.0�, and �c� supershallow donor ��=1.1�. In each case, the solid
curve is the Gaussian fit and the dashed curve is the Whittaker
function P�r� /r.
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III. RESULTS

A. Choice of parameters

We select parameters appropriate for donors in silicon, as
described previously: the appropriate effective mass is m*

= �m�
2 �m��1/3=0.33me and the relative permittivity �r=11.7,

leading to an effective Bohr radius a0
*= �0.053 nm�

�rm
*

me

=1.94 nm and an effective Hartree Ha*= �27.2 eV��a0 /a0
*�

=62 meV.
We take as a typical deep donor the case of Bi:Si, for

which the binding energy is about 71 meV �Ref. 31� or
approximately 1.15 Ha*; according to formula �7�, we there-
fore adopt �=0.7 as a typical value for a deep donor, as
used in Fig. 1. For comparison and to show that our method
is also capable of dealing with the case ��1, we also
show results for the case �=1.1, corresponding to a hypo-
thetical “supershallow” donor whose binding energy is less
than the effective-mass value. �This is of less practical inter-
est, as the shallowest known donor, Li:Si, has � almost
exactly equal to 1.� In all cases where a model central-cell
correction �of either type� is used, the radius is set to
a=0.01a0

*.
The results presented here cover the distance range from

a0
* to 12a0

*. This range includes the length scales of greatest
interest in practice, both for studies of the metal-insulator
transition and for applications in quantum information pro-
cessing, since it runs from the typical nearest-neighbor sepa-
ration at the highest attainable densities below the metal-
insulator transition �at a donor density nD=4�1018 cm−3, the
mean interdonor spacing is 3.5 nm or 1.8a0

* and approxi-
mately 90% of nearest-neighbor separations are greater than
a0

*� up to separations where the dipole-dipole interaction
starts to dominate over exchange �see Fig. 2�.

B. Benchmark: Hydrogenic donors, �=1.0

First, we perform a benchmark calculation in which we
compute the Heitler-London exchange interaction between
two pure hydrogenic donors �i.e., �=1� by two different
methods: first using the standard evaluation of the integrals
from the exact Coulomb wave functions and second using
our Gaussian fit. The results are shown in Fig. 4; the excel-
lent agreement between the dotted line A �exact Coulomb
wave functions� and the solid line C �Gaussian fit� shows
that the errors introduced by the Gaussian fit are negligible.
There is, however, some deviation at large distances �R
�8a0

*� between the solid curve C �exact Heitler-London re-
sult� and the dashed curve B �Koiller method�; this arises
because our Gaussian fit is not an exact eigenfunction of the
one-center problem and culminates in an unphysical cusp in
curve B �corresponding to a sign change in the exchange� at
R�11a0.

C. Deep donors, �=0.7

Now we know that the errors arising from our Gaussian
fits are likely to be small in the region of interest, we can
move on to calculate our main result: the exchange coupling
between two deep donors. The results for Jw, calculated from

a single-envelope function, are shown in Fig. 5. Notice that
the six curves shown have very similar behaviors over most
of the distance range. The three curves calculated using the
“exact Heitler-London method” and the different model
central-cell corrections �A, C, and E� are very close to one
another, but in this case there are some significant deviations
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FIG. 4. �Color online� The exchange coupling between hydro-
genic donors as a function of internuclear distance R. �A� Blue
dotted curve: exchange calculated directly from hydrogenic 1s Cou-
lomb wave function; �B� red dashed curve: exchange from Koiller’s
method based on R1.0

G ; and �C� black solid curve: exact Heitler-
London method from R1.0

G .
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FIG. 5. �Color online� The exchange coupling between two deep
donor electrons ��=0.7� as a function of interdonor distance R. �A�
Black solid curve: exact Heitler-London method without central-
cell correction; �B� red dashed curve: Koiller’s method without
central-cell correction; �C� green dotted curve: exact Heitler-
London method with �-potential central-cell correction; �D� blue
dashed-dotted curve: Koiller’s method with �-potential central-cell
correction; �E� cyan dashed-dotted-dotted curve: exact Heitler-
London method with square-well central-cell correction; and �F�
yellow short-dashed curve: Koiller’s method with square-well
central-cell correction �D and F are indistinguishable at long range�.
The cusp in curve B, corresponding to a sign change at R�11a0

*, is
unphysical �see text�.
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among the curves calculated using “Koiller’s method” �B, D,
and F�, both from the exact Heitler-London results and
among one another. These deviations arise because the left
side and right sides in Eq. �20� are not exactly equal: in the
cases of curves D and F, where central-cell corrections are
included, this discrepancy arises from errors in the Gaussian
fit, whereas in the case of curve B �no central-cell correc-
tion�, there is an additional error because the Whittaker func-
tion is not a true eigenfunction of the potential. This intro-
duces a larger error and leads to an �unphysical� cusp
corresponding to a sign change in the predicted exchange at
R�11a0

*.
Comparing the computed exchange with the results for

hydrogenic states �Fig. 4�, we see that the dominant effect is
the change in exponential decay constant reflecting the
change in the exponent of the radial wave functions at large
distances. It is therefore natural to ask whether a good ap-
proximation to exchange in deep donors can be obtained
simply by rescaling the results from the Heitler-London ap-
proach for a hydrogenic donor, making the replacement R
→R /�. This comparison is made in Fig. 6�a�; we see that the
scaled interactions have qualitatively the right behavior and
the correct order of magnitude, but do not match the details
of our calculation well. This impression is confirmed by
looking at the ratio of the scaled to exact results shown in
Fig. 6�b�: the error introduced by using the scaled approxi-
mation is nearly 1 order of magnitude over the distance
range shown here and increases still further at larger interdo-
nor distances.

D. Supershallow donors, �=1.1

We also show the single-envelope exchange couplings
Jw�R� in the case of two supershallow donors. The results are
shown in Fig. 7. Once again, the results are independent of

the type of central-cell correction used; furthermore �in the
range R
12a0

*�, they are now largely independent of
whether the exact Heitler-London approach or the Koiller
method is used.

Comparing the results to the hydrogenic case �Fig. 4�, the
dominant difference is once again the change in the expo-
nent. As previously, we compare with the scaled hydrogenic
Heitler-London result. Figure 8�a� shows that the matching is
much closer than for the deep donors; the relative error is
shown in Fig. 8�b�. In contrast to the deep-donor case, the
scaled hydrogenic wave function overestimates exchange in-
teraction at short range, but underestimates it at long range.
It is perhaps not surprising that the error is smaller in this
case, since � is closer to the hydrogenic value �=1 and so
the scaling has a smaller effect.

E. Intervalley effects

Having calculated Jw�R�, we include the intervalley ef-
fects by using Eq. �27�. We have calculated the exchange
between typical deep donors ��=0.7�, shallow donors ��
=1.0�, and supershallow donors ��=1.1� in silicon in the
case where the donor pair is along a �100� direction from 1a0

*

to 12a0
* and both donors are in the ground state �A1 symme-

try, so Eq. �2� applies�. We see the exchange interactions still
decay exponentially over the whole range, but this decay is
mixed with oscillations due to the intervalley terms, as
shown in Fig. 9.

The solid points in the figure denote the distances corre-
sponding to the cubic lattice constant in Si �i.e., the actual
separations of substitutional sites along �100��. For all three

4 6 8 10 12
R�a0

�

�25

�20

�15

�10

�5

ln��J�Ha���

(a)

2 4 6 8 10 12
R�a0

�
1
2
3
4
5
6

Ratio

(b)

FIG. 6. Comparison of the exact Heitler-London exchange for
deep donors ��=0.7� with scaled hydrogenic results. �a� Exact
Heitler-London exchange Jexact calculated using a square-well
central-cell correction �solid line�, and scaled exchange splitting
Jscaled obtained from the hydrogenic Heitler-London formula evalu-
ated at the increased distance R /0.7 �dashed line�. �b� The ratio
Jscaled /Jexact as a function of interdonor distance.
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FIG. 7. �Color online� The exchange coupling between two su-
pershallow donor electrons ��=1.1� as a function of interdonor dis-
tance R. �A� Black solid curve: exact Heitler-London method with-
out central-cell correction; �B� red dashed curve: Koiller’s method
without central-cell correction; �C� green dotted curve: exact
Heitler-London method based on with �-potential central-cell cor-
rection; �D� blue dashed-dotted curve: Koiller’s method with
�-potential central-cell correction; �E� cyan dashed-dotted-dotted
curve: exact Heitler-London method with square-well central-cell
correction; and �F� yellow short-dashed curve: Koiller’s method
with square-well central-cell correction. Notice that these six curves
have very similar behavior over the whole range except at short
distance where there is a dependence on the central-cell corrections.
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defect types, the interference terms produce deviations from
site to site of approximately 1 order of magnitude, in agree-
ment with the results for hydrogenic defects.21

F. Distributions of exchange couplings

In the interpretation of experiments on the ensemble of
interacting spins, it is frequently the probability distribution
of the nearest-neighbor exchange couplings which is the
quantity of most relevance.1,45 In order to show how this
depends on the donor type, we have used a continuous
distribution46 of donor positions at two different densities,
chosen so that the mean nearest-neighbor separations are,
respectively, 3.5a0

*�6.8 nm and 7.0a0
*�13.5 nm, and plot-

ted the distributions of log J for the three different types of
defects in Fig. 10. �The lower limit plotted corresponds ap-
proximately to the values of J where dipolar interactions
begin to dominate over exchange.� All the distributions are
extremely broad �as would be expected from the exponential
scaling of the exchange with separation� but the strong de-
pendence on the type of donor is evident.

This distribution is important for the choice of donor con-
centration in samples for applications in quantum informa-
tion processing; for example, in the scheme proposed in Ref.
3, the density should ideally be sufficiently low that typical
exchange interactions between neighbors produce a small
evolution of the system on the time scales of gate operation.
For deep donors with �=0.7, typical nearest-neighbor inter-
actions at the lower density are 10−4 Ha* or smaller, con-
straining gate operation times to be at most 0.1 ns.

IV. CONCLUSION

We have shown that a combination of quantum defect
theory �where Whittaker functions are used to describe sim-
ply the long-range part of donor wave functions� with model
central-cell corrections can be used to describe the electronic
structure of donors in semiconductors having binding ener-
gies significantly different from the ideal hydrogenic
effective-mass value, including, in particular, the important
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FIG. 8. Comparison of the exact Heitler-London exchange for
supershallow donors ��=1.1� with scaled hydrogenic results. �a�
Exact Heitler-London exchange Jexact with a square-well central-
cell correction �solid curve�, and scaled exchange splitting Jscaled

obtained from the hydrogenic Heitler-London formula at the re-
duced distance R /1.1 �dashed curve�. �b� The ratio Jscaled /Jexact as a
function of interdonor distance.
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FIG. 9. �Color online� Donor-pair exchange including interval-
ley effects for pair separations along the �100� direction as a func-
tion of donor distance R. The exchange at integer multiples of the
lattice constant is represented by square points. A square-well
central-cell correction and the exact Heitler-London approach were
used for all the calculations. �A and A�� Lower �black� group: two
deep donors with �=0.7; �B and B�� middle �red� group: two typi-
cal shallow donors with �=1.0; and �C and C�� the upper �blue�
group: two supershallow donors with �=1.1. The inset magnifies
the indicated portion of curve A to show clearly the oscillations
arising from the intervalley interferences.
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FIG. 10. �Color online� The probability distribution of log J as a
function of J �logarithmic scale� for donors with three different
binding energies at densities 0.003 96�a0

*�−3=5.42�1017 cm−3

�curves A, B, and C� and 0.0005�a0
*�−3=6.85�1016 cm−3 �curves

D, E, and F�. Solid �black� curve A and dashed-dotted �blue� curve
D: deep donor �=0.7; dashed �red� curve B and dashed-dotted-
dotted �magenta� curve E: shallow donor �=1.0; and dotted �green�
curve C and short-dashed �yellow� curve F: supershallow donor �
=1.1.
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case of deep donors. From these wave functions, we have
shown that it is possible to calculate the exchange interac-
tions between donors, both in the single-envelope function
approximation and by including the interference effects be-
tween contributions from different conduction-band minima.
These interference effects typically cause the exchange to
fluctuate by approximately 1 order of magnitude between the
separations of successive substitutional sites, in agreement
with previous calculations for shallow donors.

From the comparison between the exchange calculations
performed with and without different central-cell corrections,
we can see that as expected the correct long-range behavior
of the wave function is more important than the form near
the nucleus, except when the interdonor distance becomes
very small—however, the Heitler-London-like approach we
use for exchange is not expected to be accurate at short
range. At long range, the central-cell corrections have only
small effects on the exchange, although these may be en-
hanced by the interference of intervalley terms. However, the
inclusion of central-cell corrections is important to obtain
consistent results for the exchange between the exact Heitler-
London approach �Eq. �21�� and the frequently used simpli-
fication given by Eq. �14�.

Our calculations rely on a Gaussian fit to the true form of
the radial function, which is least accurate very near the
nucleus and at large distances. At large donor separations, we
expect the error due to corrections near the nucleus to scale
as O�a3�, where a is the starting radius for the fitting. In our
calculations a=0.01a0

*, much less than the donor separations
1−12a0

* that we consider, so we expect this error to be neg-
ligible. The long-range error in the fit is important only at

very large donor separations where the spin-spin interaction
is no longer exchange dominated.

We have shown that the type of defect has a significant
effect on the distribution of nearest-neighbor exchange cou-
plings experienced at a given density. To summarize the
magnitude of the effect, at a separation of 3.5a0

*�6.8 nm,
the exchange is approximately 0.15 meV for typical deep
donors, 3 meV for hydrogenic shallow donors, and 5 meV
for the so-called supershallow donors. This emphasizes the
usefulness of deep donors for the short-term storage of quan-
tum information and confirms them as candidates for quan-
tum information processing provided that entangling interac-
tions between them can be switched sufficiently quickly.2,3

We have also shown that simply scaling the hydrogenic
exchange interaction from the Heitler-London formula does
not agree quantitatively with our explicit calculations,
though it does give the correct order of magnitude for the
exchange. The error is most serious for the important case of
deep donors.

We believe the methods we present here are quantitatively
reliable and simple enough to provide a useful tool for cal-
culating exchange interactions between donor pairs having
arbitrary binding energies.
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